Bekenstein Lab Logo

Publications

23. "Planar optical waveguides using SEBS activated with inorganic lead halide perovskites nanoplates"
T. Abir, R. Shechter, T. Ellenbogen, & Y. Bekenstein, ACS Photonics, 2020. DOI: 10.1021/acsphotonics.0c00478

Planar Optical Waveguides

22. "Lead halide perovskite nanowires stabilized by block copolymers for Langmuir-Blodgett assembly"
H. Liu, M. Siron, M. Gao, D. Lu, Y. Bekenstein, D. Zhang, L. Dou, A. P. Alivisatos & P. Yang, Nano Research, 13, 1453–1458, 2020, DOI: 10.1007/s12274-020-2717-9

Lead halide perovskite nanowires

21. “Perovskite Nanowire-Block Copolymer Composites with Digitally Programmable Polarization Anisotropy”
N.Zhou*, Y.Bekenstein*, C.N.Eisler, D.Zhang, A.M.Schwartzberg, P.Yang, A.P. Alivisatos, J.A.Lewis, Science Advances 5.5, 2019, DOI: 10.1126/sciadv.aav8141

Perovskite nanowire–block copolymer

20. “Probing the stability and bandgaps of Cs2AgInCl6 and Cs2AgSbCl6 lead-free double perovskite nanocrystals”
J.C.Dahl, W.T.Osowiecki, Y.Cai, J.K. Swabeck, Y.Bekenstein, M.D.Asta, E.M.Chan, A.P. Alivisatos, Chemistry of Materials, 2019, DOI:10.1021/acs.chemmater.8b04202

Probing the Stability and Band Gaps of Cs2AgInCl6 and Cs2AgSbCl6 Lead-Free Double Perovskite Nanocrystals Abstract

 

19. “Advances in lead-free double perovskite nanocrystals, engineering band-gaps and enhancing stability through composition tunability”
S. Khalfin, Y.Bekenstein, Nanoscale.2019 DOI: 10.1039/C9NR01031A


Advances in lead-free double perovskite nanocrystals, engineering band-gaps and enhancing stability through composition tunability

 

18. “Trap Passivation in Indium-Based Quantum Dots through Surface Fluorination: Mechanism and Applications”
T.Kim, D.Zherebetskyy, Y.Bekenstein, M.Oh, L.W.Wang, E.J. Jang, and A. P.Alivisatos. ACS Nano. 2018; acsnano.8b06692.

Trap Passivation in Indium-Based Quantum Dots through Surface Fluorination: Mechanism and Applications

 

17. “The Making and Breaking of Lead-Free Double Perovskite Nanocrystals of Cesium Silver–Bismuth Halide Compositions”
Y.Bekenstein*, J.C.Dahl*, J.Huang*, W.T.Osowiecki, J. Swabeck, E.M.Chan, P.Yang, A.P.Alivisatos.Nano Lett. 2018, 18 (6), 3502–3508.

The Making and Breaking of Lead-Free Double Perovskite Nanocrystals of Cesium Silver–Bismuth Halide Compositions

 

16. “Strongly Quantum Confined Colloidal Cesium Tin Iodide Perovskite Nanoplates: Lessons for Reducing Defect Density and Improving Stability”
A.B.Wong*; Y.Bekenstein*; J.Kang; C.S.Kley; D.Kim; N.A.Gibson; D.Zhang, Y.Yu; S.R Leone;L.W Wang; A.P Alivisatos; P. Yang. Nano Lett. 2018, 18 (3), 2060–2066.

Strongly Quantum Confined Colloidal Cesium Tin Iodide Perovskite Nanoplates: Lessons for Reducing Defect Density and Improving Stability

 

15. “Ligand Mediated Transformation of Cesium Lead Bromide Perovskite Nanocrystals to Lead Depleted Cs4PbBr6 Nanocrystals”
Z.Liu, Y.Bekenstein, X. Ye, SC.Nguyen, J.Swabeck, D.Zhang, S.T.Lee, P.Yang, W.Ma, A P.Alivisatos  J. Am. Chem. Soc, 2017, 139 (15), pp 53095312

14. Encapsulation of Perovskite Nanocrystals into Macroscale Polymer Matrices: Enhanced Stability and Polarization”
SN.Raja*, Y.Bekenstein*, MA.Koc, S.Fisher, D. Zhang, L.Lin, R.Ritchie, P.Yang, AP.Alivisatos ,ACS Appl. Mater.Interfaces, 2016, 8 (51), pp 35523–35533

Encapsulation of Perovskite Nanocrystals into Macroscale Polymer Matrices: Enhanced Stability and Polarization

 

13. "Ultrathin Colloidal Cesium Lead Halide Perovskite Nanowires"
D.Zhang*, Y.Yu*, Y.Bekenstein*, AB.Wong, AP.Alivisatos, P.Yang. J. Am. Chem. Soc., 2016, 138 (40), pp 13155–13158

Ultrathin Colloidal Cesium Lead Halide Perovskite Nanowires

 

12. “Atomic Resolution Imaging of Halide Perovskite”
Y.Yu, D.Zhang, C.Kisielowski, L.Dou, N.Kornienko, Y.Bekenstein, AB.Wong, AP.Alivisatos, P.Yang. Nano Lett., 2016, 16 (12), pp 7530–7535

Atomic Resolution Imaging of Halide Perovskites

 

11. “Surface-vs Diffusion-Limited Mechanisms of Anion Exchange in CsPbBr3 Nanocrystal Cubes Revealed through Kinetic Studies”
BA.Koscher, ND.Bronstein, JH.Olshansky, Y.Bekenstein, AP.Alivisatos, J. Am. Chem. Soc., 2016, 138 (37), pp 12065–12068

Surface- vs Diffusion-Limited Mechanisms of Anion Exchange in CsPbBr3 Nanocrystal Cubes Revealed through Kinetic Studies

 

10. “Synthesis of Composition Tunable and Highly Luminescent Cesium Lead Halide Nanowires through Anion-Exchange Reactions”
D. Zhang*; Y.Yang*, Y.Bekenstein*, Y.Yu, , NA. Gibson, AB.Wong, SW. Eaton, N.Kornienko, Q.Kong, M.Lai, AP.Alivisatos, SR. Leone, P.Yang, J. Am. Chem. Soc. 2016, 138 (23), 7236.

Synthesis of Composition Tunable and Highly Luminescent Cesium Lead Halide Nanowires through Anion-Exchange Reactions

 

9. “Highly Luminescent Colloidal Nanoplates of Perovskite Cesium Lead Halide and Their Oriented Assemblies.”
Y. Bekenstein; BA. Koscher; SW. Eaton; P. Yang; AP.Alivisatos, J. Am. Chem. Soc. 2015, 137 (51), 16008.

Highly Luminescent Colloidal Nanoplates of Perovskite Cesium Lead Halide and Their Oriented Assemblies

 

8. “Charge transport in Cu2S nanocrystal arrays a study of crystal size and ligand length”
Y.Bekenstein
, O.Elimelech, K.Vinokurov, O.Millo, U.Banin Zeitschrift für Phys. Chemie. 2015, 229 (1-2).

7. “Thermal doping by vacancy formation in copper sulfide nanocrystal arrays”
Y.Bekenstein
, K.Vinokurov, S.Keren-Zur, I. Hadar, Y. Schilt, U. Raviv, O.Millo, U.Banin. Nano Lett. 2014, 14 (3), 1349. (1)

Thermal Doping by Vacancy Formation in Copper Sulfide Nanocrystal Arrays

 

6. “Exceptional hazard in the inflation of heart shaped balloons”
K.Brosh MD, Y.Bekenstein, T.Goldman, I.Strassman MD. Acta Ophthalmol. 2014, 92 (1), e83.

Comparison of heart‐shaped balloon burst (A) and spherical balloon burst (B).

 

5. “Colloidal semiconductor nanorod couples via self-limited assembly”
G.Jia, A.Sitt, G.B. Hitin, I.Hadar, Y. Bekenstein, Y. Amit, I.Popov, U.Banin. Nat. Mater. 2014, 13 (3), 301.

Electron microscopy images of ZnSe nanorod couples

 

4. “Rhodium growth on Cu2S nanocrystals yielding hybrid nanoscale inorganic cages and their synergetic properties”
K. Vinokurov, Y.Bekenstein, V.Gutkin, O. Millo,  and U. Banin . CrystEngComm 2014, 16 (40), 9506.

Rhodium growth on Cu2S nanocrystals yielding hybrid nanoscale inorganic cages and their synergistic properties

 

3. “Controlling Localized Surface Plasmon Resonances in GeTe Nanoparticles Using an Amorphous-to-Crystalline Phase Transition”
MJ. Polking, PK.Jain, Y.Bekenstein, U.Banin, O.Millo, R.Ramesh, and AP. Alivisatos. Phys. Rev. Lett. 2013, 111 (3), 037401.

Controlling Localized Surface Plasmon Resonances in GeTe Nanoparticles Using an Amorphous-to-Crystalline Phase Transition

2. “Electronic properties of hybrid Cu2S/Ru semiconductor/metallic-cage nanoparticles”
Y.Bekenstein, K.Vinokurov, U.Banin, O.Millo. Nanotechnology 2012, 23 (50), 505710.

Electronic properties of hybrid Cu2S/Ru semiconductor/metallic-cage nanoparticles

 

1. “Periodic negative differential conductance in a single metallic nanocage”
Y.Bekenstein, K.Vinokurov, TJ.Levy, E.Rabani, U.Banin, O.Millo. Phys. Rev. B 2012, 86 (8), 085431.

Periodic negative differential conductance in a single metallic nanocage